TRENDING NEWS

POPULAR NEWS

How To Integrate 5^3x Dx

How do you integrate sec^6 (3x) dx?

∫ sec^6(3x) dx =

rewrite it as:

∫ sec^4(3x) sec²(3x) dx =

rewrite sec^4(3x) in terms of tan(3x) as:

∫ [sec²(3x)]² sec²(3x) dx =

∫ [tan²(3x) + 1]² sec²(3x) dx =

expand the square:

∫ [tan^4(3x) + 2tan²(3x) + 1] sec²(3x) dx =

substitute tan(3x) = u

differentiate both sides:

d[tan(3x)] = du

3sec²(3x) dx = du

sec²(3x) dx = (1/3)du

yielding:

∫ [tan^4(3x) + 2tan²(3x) + 1]² sec²(3x) dx = ∫ (u^4 + 2u² + 1) (1/3) du =

break it up and pull constants out:

(1/3) ∫ u^4 du + (2/3) ∫ u² + (1/3) ∫ du =

(1/3) [1/(4+1)] u^(4+1) + (2/3) [1/(2+1)] u^(2+1) + (1/3)u + C =

(1/3)(1/5)u^5 + (2/3)(1/3)u^3 + (1/3)u + C =

(1/15)u^5 + (2/9)u^3 + (1/3)u + C

substitute back tan(3x) for u, ending with:

∫ sec^6(3x) dx = (1/15) tan^5(3x) + (2/9) tan^3(3x) + (1/3) tan(3x) + C



I hope it helps..

What is the integral of cos^5(3x)dx?

∫ cos⁵(3x) dx =
being cosine odd-powered, rewrite the integrand as:
∫ cos⁴(3x) cos(3x) dx =
being cos²(3x) = 1 - sin²(3x),
∫ [1 - sin²(3x)]² cos(3x) dx =
that can be expanded as:
∫ [1 - 2sin²(3x) + sin⁴(3x)] cos(3x) dx =
∫ [cos(3x) - 2sin²(3x)cos(3x)+ sin⁴(3x)cos(3x)] dx =
breaking it up,
∫ cos(3x) dx - 2 ∫ sin²(3x)cos(3x) dx + ∫ sin⁴(3x)cos(3x) dx =
now let sin(3x) = u →
differentiating both sides:
d[sin(3x)] = du →
3 cos(3x) = du →
cos(3x) = (1/3) du
thus, substituting,
∫ cos(3x) dx - 2 ∫ sin²(3x)cos(3x) dx + ∫ sin⁴(3x)cos(3x) dx =

∫ (1/3) du - 2 ∫ u²(1/3) du + ∫ u⁴(1/3) du =

(1/3) ∫ du - (2/3) ∫ u² du + (1/3) ∫ u⁴ du =

(1/3) u - (2/3) (u²⁺¹)/(2+1) + (1/3) (u⁴⁺¹)/(4+1) + c =

(1/3) u - (2/3)(1/3) u³ + (1/3)(1/5) u⁵ + c =

(1/3)u - (2/9)u³ + (1/15)u⁵ + c =

finally, substituting back u = sin(3x), you get:

∫ cos⁵(3x) dx = (1/3) sin(3x) - (2/9) sin³(3x) + (1/15) sin⁵(3x) + c

I hope it has been helpful..

Bye!

Integral of: 3cos^5(3x)dx?

3(cos(3x))^5 = 3 cos(3x) (cos(3x))^4

= 3 cos(3x) (cos(3x)^2)^2

= 3 cos(3x) (1 - sin(3x)^2)^2


use
u = sin(3x)
du = 3 cos(3x) dx




∫3 cos(3x) (1 - sin(3x)^2)^2 dx

= ∫(1 - u^2)^2 du

= ∫(1 - 2u^2 + u^4) du
u - (2/3) u^3 + (1/5) u^5

= sin(3x) - (2/3) sin^3(3x) + (1/5) sin^5(3x) + c

TRENDING NEWS