TRENDING NEWS

POPULAR NEWS

Integrate The Following Using Trigonometric Substitution 1. Dx/ Squareroot Of 4x^2 1 2. Dx /

Integrate using trigonometric substitution !!?

it can go w/o subsitution,
integrate dx/sqrt(4x^2-49)
1/2 integrate dx/sqrt. [x^2-(7/2)^2]
1/2 *1/2*2/7 ln(2x-7)/(2x+7)
1/14 ln (2x-7)/(2x+7)

Using trigonometric substitution. solve the integral of x^2/(the square root of x^2 -4) dx?

∫ [x² /√(x² - 4)] dx =

let x = 2secθ

secθ = x/2

dx = 2tanθ secθ dθ

substitute, yielding:

∫ [x² /√(x² - 4)] dx = ∫ {(2secθ)² /√[(2secθ)² - 4]} 2tanθ secθ dθ =

∫ [4sec²θ /√(4sec²θ - 4)] 2tanθ secθ dθ =

factor 4 out of the radical:

∫ {4sec²θ /√[4 (sec²θ - 1)]} 2tanθ secθ dθ =

replace (sec²θ - 1) with tan²θ:

∫ {4sec²θ /[2√(tan²θ)]} 2tanθ secθ dθ =

∫ [4sec²θ /(2tanθ)] 2tanθ secθ dθ =

simplifying, you have:

4 ∫ sec²θ secθ dθ =

let:

sec²θ dθ = dv → tanθ = v

secθ = u → tanθ secθ dθ = du

integrating by parts, you get:

∫ u dv = v u - ∫ v du

4 ∫ sec²θ secθ dθ = 4 (tanθ secθ - ∫ tanθ tanθ secθ dθ) →

4 ∫ sec³θ dθ = 4tanθ secθ - 4 ∫ tan²θ secθ dθ →

replace tan²θ with (sec²θ - 1):

4 ∫ sec³θ dθ = 4tanθ secθ - 4 ∫ (sec²θ - 1) secθ dθ →

expand it into:

4 ∫ sec³θ dθ = 4tanθ secθ - 4 ∫ (sec³θ - secθ) dθ →

split it into:

4 ∫ sec³θ dθ = 4tanθ secθ - 4 ∫ sec³θ dθ + 4 ∫ secθ dθ →

collect ∫ sec³θ dθ on the left side:

4 ∫ sec³θ dθ + 4 ∫ sec³θ dθ = 4tanθ secθ + 4 ∫ secθ dθ →

(2)4 ∫ sec³θ dθ = 4tanθ secθ + 4 ∫ secθ dθ →

4 ∫ sec³θ dθ = (1/2) (4tanθ secθ + 4 ∫ secθ dθ) =

2tanθ secθ + 2 ∫ secθ dθ =

multiply the remaining integrand by (tanθ + secθ)/(secθ + tanθ) (= 1):

2tanθ secθ + 2 ∫ (tanθ + secθ) secθ dθ /(secθ + tanθ) =

expand the top:

2tanθ secθ + 2 ∫ (tanθ secθ + sec²θ) dθ /(secθ + tanθ) =

note that the top is the derivative of the bottom:

2tanθ secθ + 2 ∫ d(secθ + tanθ) /(secθ + tanθ) =

2tanθ secθ + 2 ln |secθ + tanθ| + C

recall that:

secθ = x/2

hence

tanθ = √(sec²θ - 1) = √[(x/2)² - 1] = √[(x²/4) - 1] = √[(x² - 4) /4] = [√(x² - 4)] /2

thus, substituting back, you get:

2tanθ secθ + 2 ln |secθ + tanθ| + C = 2 {[√(x² - 4)] /2} (x/2) + 2 ln |(x/2) +
{[√(x² - 4)] /2}| + C =

concluding with:

∫ [x² /√(x² - 4)] dx = (x/2)√(x² - 4) + 2 ln |[x + √(x² - 4)] /2| + C



I hope it helps..

Integrate 1/x(sqrt(4x^2+9))dx using trigonometric substitution x=(3tan/2)?

INTEGRAL[1/(x*sqrt(4x^2+9)) dx]
2x=3tanu; x=(3/2)tanu; dx=(3/2)sec^2(u) du
INTEGRAL[(3/2)*sec^2(u) / ((3/2)tanu * sqrt(9tan^2(u)+9)) du]
INTEGRAL[(3/2)(2/3)(1/3)sec^2(u) / (tanu* sqrt(sec^2(u))) du]
INTEGRAL[(1/3)cscu du]
(1/3)ln(cscu - cotu)+C
Now cotu=3/(2x) and cot^2(u)+1=csc^2(u)
So cscu=sqrt(9/(4x^2) + 1) or sqrt(9+4x^2)/2x
We get (1/3)ln[(sqrt(9+4x^2) - 3)/(2x)] + C

How to solve the integral of sqrt(9-4x^2) using trig substitution?

The directions say to use appropriate trigonometric substitution to evaluate it, but I'm not sure how to do it, as the 9 and 4 are throwing me off. Any help would be greatly appreciated!

Trigonometric Substitution ∫√(1-4x²) dx?

∫√(1 - 4x²) dx =
let x = (1/2) cos u → cos u = 2x → u = arccos(2x)
dx = (1/2)(-sin u) du = - (1/2)sin u du
then, proceeding with substitution,
∫√(1 - 4x²) dx = ∫√{1 - 4[(1/2) cos u]²} [-(1/2)sin u] du =
- (1/2) ∫√{1 - 4[(1/4) cos²u]} (sin u) du =
- (1/2) ∫ [√(1 - cos²u)] (sin u) du =
- (1/2) ∫ [√(sin²u)] (sin u) du =
(*) - (1/2) ∫ (sin u) (sin u) du =
now let (sin u) du (second factor) = dv → - cos u = v
(sin u) (first factor) = U → cos u du = dU
now, integrating by parts,
- (1/2) ∫ (sin²u) du = - (1/2) ∫ (sin u) (sin u) du =
- (1/2) [(- cos u) (sin u) - ∫ (- cos u) cos u du] = (1/2) cos u sin u - (1/2) ∫ cos²u du
thus, to sum up:
- (1/2) ∫ sin²u du = (1/2) cos u sin u - (1/2) ∫ cos²u du →
- (1/2) ∫ sin²u du = (1/2) cos u sin u - (1/2) ∫ (1 - sin²u) du →
- (1/2) ∫ sin²u du = (1/2) cos u sin u - (1/2) ∫ du + (1/2) ∫ sin²u du →
now, having got the same integral at both sides, let us gather
the unknown integral (1/2) ∫ sin²u du at left side:
- (1/2) ∫ sin²u du - (1/2) ∫ sin²u du = (1/2) cos u sin u - (1/2) ∫ du →
- (1/2) ∫ sin²u du - (1/2) ∫ sin²u du = (1/2) cos u sin u - (1/2) ∫ du →
- ∫ sin²u du = (1/2) cos u sin u - (1/2) ∫ du →
- ∫ sin²u du = (1/2) cos u sin u - (1/2)u + c →
and therefore (see (*) above):
- (1/2) ∫ sin²u du = (1/4) cos u sin u - (1/4)u + c

now, substituting back u = arccos(2x), you get:

∫√(1 - 4x²) dx = (1/4) cos [arccos(2x)] sin [arccos(2x)] - (1/4)arccos(2x) + c
in order to express the first term of the result in algebraic form,
after letting back u = [arccos(2x)], you have to express sin u in terms of cos u, that is:
sin u = √(1 - cos²u)
in which cos u = cos[arccos(2x)] = 2x
and therefore:
sin u = sin [arccos(2x)] = √(1 - cos²u) = √[1 - (2x)²] = √ (1 - 4x²)
thus your definitive result is:
∫√(1 - 4x²) dx = (1/4) cos [arccos(2x)] sin [arccos(2x)] - (1/4)arccos(2x) + c →
∫√(1 - 4x²) dx = (1/4)(2x)√(1 - 4x²) - (1/4)arccos(2x) + c =
(1/2)x√(1 - 4x²) - (1/4) arccos(2x) + c
I hope it has been helpful
Bye!

What is the integration of square root 4-x2?

By x2, I'm going to assume you mean x^2.

Integral ( sqrt(4 - x^2) dx )

You definitely have to use trigonometric substitution to solve this. I'm going to use "t" instead of "theta" though.

Let x = 2sin(t). Then
dx = 2cos(t) dt

Applying the substitution gives us

Integral ( sqrt(4 - (2sin(t))^2) 2cos(t) dt )

Simplifying,

Integral ( sqrt(4 - 4sin^2(t)) 2cos(t) dt )

Factor the 4 inside the square root, and the 2 outside of the integral.

2 * Integral ( sqrt [ 4(1 - sin^2(t)) ] cos(t) dt )

The 4 comes out of the square root as 2.

2 * Integral ( 2 * sqrt(1 - sin^2(t)) cos(t) dt )

Pull the 2 out of the integral, as it is a constant.

2 * 2 * Integral ( sqrt(1 - sin^2(t)) cos(t) dt )

Multiply the 2's together. Use the trig identity 1 - sin^2(t) = cos^2(t).

4 * Integral ( sqrt( cos^2(t) ) cos(t) dt )

The square root of a squared term is itself.

4 * Integral ( cos(t) cos(t) dt )

4 * Integral ( cos^2(t) dt )

To integrate squared trigonometric functions by themselves, we must use the half angle identity. A reminder that

cos^2(t) = (1/2) (1 + cos(2t))

4 * Integral ( (1/2) (1 + cos(2t)) dt )

Factor the (1/2) out of the integral. This merged with the 4 to become 2.

2 * Integral ( (1 + cos(2t)) dt )

And now, we can integrate term by term. A reminder that, for a constant n, the integral of cos(nt) = (1/n)sin(nt).

2 (t + (1/2) sin(2t) ) + C

Distribute the 2,

2t + sin(2t) + C

Apply the double angle identity sin(2t) = 2sin(t)cos(t)

2t + 2sin(t)cos(t) + C

To convert this back in terms of x, we must use trigonometry and SOHCAHTOA. Since

x = 2sin(t), then
sin(t) = x/2

A reminder that by SOHCAHTOA,
sin(t) = opp/hyp. Therefore,

opp = x,
hyp = 2, so by Pythagoras,
adj = sqrt(2^2 - x^2) = sqrt(4 - x^2)

It follows that
cos(t) = adj/hyp = sqrt(4 - x^2)/2

Furthermore, since sin(t) = x/2, t = arcsin(x/2).
Using all of these facts,

2t + 2sin(t)cos(t) + C

becomes

2arcsin(x/2) + 2 (x/2) (sqrt(4 - x^2)/2) + C

Which converts to

2arcsin(x/2) + (x/2) sqrt(4 - x^2) + C

How can I solve the integral of x^3√(9-x^2) dx using trigonometric substitution? ?

∫ x^3√(9-x^2) dx

So then I know that
x = 3sinθ
dx = 3cosθdθ

When I substitute, it becomes

∫ (3sinθ)^3 * √(9-(3sinθ)^2) * 3cosθdθ

= ∫ (27sin^3θ * (3 - 3sinθ)* 3cosθdθ

Is there any way to furter simplify this before I solve it? And if there isn't, how would I go about solving it?

TRENDING NEWS