TRENDING NEWS

POPULAR NEWS

What Is The Integration Of X 2 /sqrt 4x-x^2-3 Dx

How do I integrate (dx/ (x^2+4) (sqrt (4x^2+1)))?

This is a standard question of the form 1/ quadratic multiplied by square root quadratic.The substitution is x = 1/t and after that one more substitution is required , the quantity in square root must be substituted as u ^2.And the question gets solved.

Integral of (x+3)/(sqrt(5-4x-x^2) dx?

5 - 4x - x^2 =>
5 - (x^2 + 4x) =>
5 - (x^2 + 4x + 4 - 4) =>
5 - (-4) - (x^2 + 4x + 4) =>
5 + 4 - (x + 2)^2 =>
9 - (x + 2)^2

(x + 3) * dx / sqrt(9 - (x + 2)^2)

x + 2 = u
dx = du

(u + 1) * du / sqrt(9 - u^2)
u * du / sqrt(9 - u^2) + du / sqrt(9 - u^2)

a = 9 - u^2
da = -2u * du

(-1/2) * da / sqrt(a) + du / sqrt(9 - u^2)

u = 3 * sin(t)
du = 3 * cos(t) * dt

(-1/2) * da / sqrt(a) + 3 * cos(t) * dt / sqrt(9 - 9sin(t)^2) =>
3 * cos(t) * dt / sqrt(9cos(t)^2) - (1/2) * a^(-1/2) * da =>
3 * cos(t) * dt / (3 * cos(t)) - (1/2) * a^(-1/2) * da =>
dt - (1/2) * a^(-1/2) * da

Integrate

t - (1/2) * (1/(-1/2 + 1)) * a^(-1/2 + 1) + C =>
t - (1/2) * (1/(1/2)) * a^(1/2) + C =>
t - (1/2) * 2 * a^(1/2) + C =>
t - sqrt(a) + C =>
arcsin(u/3) - sqrt(9 - u^2) + C =>
arcsin((x + 2) / 3) - sqrt(5 - 4x - x^2) + C

Integral 1/sqrt(4x-x^2)?

integral 1/sqrt(4 x-x^2) dx
For the integrand 1/sqrt(4 x-x^2), complete the square:
= integral 1/sqrt(4-(x-2)^2) dx
For the integrand 1/sqrt(4-(x-2)^2), substitute u = x-2 and du = dx:
= integral 1/sqrt(4-u^2) du
The integral of 1/sqrt(4-u^2) is sin^(-1)(u/2):
= sin^(-1)(u/2)+constant
Substitute back for u = x-2:
= sin^(-1)((x-2)/2)+constant
Which is equivalent for restricted x values to:
= (2 sqrt(x-4) sqrt(x) log(2 (sqrt(x-4)+sqrt(x))))/sqrt(-(x-4) x)+constant

How do you integrate of [math]\frac{2x.dx}{\sqrt{4x-x^2}}[/math]?

∫ 2x/√(4x - x²) dxu = 4x - x²du = (4 - 2x) dx= ∫ (4 - (4 - 2x))/√(4x - x²) dx= 4 ∫ 1/√(4x - x²) dx - ∫ (4 - 2x)/√(4x - x²) dx= (4/i) ∫ 1/√(x² - 4x) dx - ∫ (1/√u) du= (4/i) ∫ 1/√((x² - 4x + 4) - 4) dx - ∫ u^(-1/2) du= (4/i) ∫ 1/√((x - 2)² - 4) dx - 2u^(1/2) + C= (4/i) ∫ 1/√((x - 2)² - 4) dx - 2√u + C= (4/i) ∫ 1/√((x - 2)² - 4) dx - 2√(4x - x²) + Cx - 2 = 2 sec v(x - 2)² = 4 sec²vsec v = (x - 2)/2tan v = (√(x² - 4x))/2dx = 2 sec v tan v dv= (8/i) ∫ 1/√(4 sec²v - 4) sec v tan v dv - 2√(4x - x²) + C= (4/i) ∫ 1/√(sec²v - 1) sec v tan v dv - 2√(4x - x²) + C= (4/i) ∫ 1/(tan v) sec v tan v dv - 2√(4x - x²) + C= (4/i) ∫ sec v dv - 2√(4x - x²) + C= (4/i) ln|sec v + tan v| - 2√(4x - x²) + C= (4/i) ln|((x - 2)/2) + ((√(x² - 4x))/2)| - 2√(4x - x²) + C

How do I integrate (3x-2)(x^2+2x+3^1/2)dx?

integrate((3*x-2)*(x^2+2*x+sqrt(3)),x) in xmaxima gives, upon multthru,3*x^4/4+4*x^3/3+(3*sqrt(3)-4)*x^2/2–2*sqrt(3)*x+k1. You expand out the terms in the integrand and integrate term by term.

How do you integrate the integral sqrt(5+4x-x^2) dx?

∫ √(5 + 4x - x²) dx =

complete the square by adding and subtracting 4:

∫ √(5 + 4 - 4 + 4x - x²) dx =

∫ √[(5 + 4) - (x² - 4x + 4)] dx =

∫ √[9 - (x - 2)²] dx =

let (x - 2) = t → d(x - 2) = dt → dx = dt

substituting, you have:

∫ √(9 - t²) dt =

let:

dt = dv → t = v

√(9 - t²) = u → (1/2)(- 2t)(9 - t²)^[(1/2) -1] dt = (- t)(9 - t²)^(-1/2) dt = [- t /√(9 - t²)] dt = du

integrating by parts, you get:

∫ u dv = v u - ∫ v du

∫ √(9 - t²) dt = t √(9 - t²) - ∫ t [- t /√(9 - t²)] dt

∫ √(9 - t²) dt = t √(9 - t²) - ∫ [- t² /√(9 - t²)] dt

add and subtract 9 on the top:

∫ √(9 - t²) dt = t √(9 - t²) - ∫ {[(9 - t²) - 9] /√(9 - t²)} dt

split it into:

∫ √(9 - t²) dt = t √(9 - t²) - ∫ [(9 - t²)/√(9 - t²)] dt + 9 ∫ [1/√(9 - t²)] dt

that simplifies into:

∫ √(9 - t²) dt = t √(9 - t²) - ∫ √(9 - t²) dt + 9 ∫ [1/√(9 - t²)] dt

collect ∫ √(9 - t²) dt at the right side:

∫ √(9 - t²) dt + ∫ √(9 - t²) dt = t √(9 - t²) + 9 ∫ [1/√(9 - t²)] dt

2 ∫ √(9 - t²) dt = t √(9 - t²) + 9 ∫ dt /√(9 - t²)

∫ √(9 - t²) dt = (1/2) {t √(9 - t²) + 9 ∫ dt /√(9 - t²)} = (1/2)t √(9 - t²) + (9/2) ∫ dt /√(9 - t²) =

factor out 9:

(1/2)t √(9 - t²) + (9/2) ∫ dt /√{9[1 - (t²/9)]} =

(1/2)t √(9 - t²) + (9/2) ∫ dt /{3 √[1 - (t²/9)]} =

rearrange it as:

(1/2)t √(9 - t²) + (9/2) ∫ (1/3)dt /√[1 - (t/3)²] =

(1/2)t √(9 - t²) + (9/2) ∫ d(t/3) /√[1 - (t/3)²] =

thus, recalling that ∫ d[f(x)] /√{1 - [f(x)]²} = arcsin[f(x)] + C, you get:

(1/2)t √(9 - t²) + (9/2)arcsin(t/3) + C

finally substitute back (x - 2) for u:

(1/2)(x - 2)√[9 - (x - 2)²] + (9/2)arcsin[(x - 2)/3] + C =

(1/2)(x - 2)√[9 - (x² - 4x + 4)] + (9/2)arcsin[(x - 2)/3] + C =

(1/2)(x - 2)√(9 - x² + 4x - 4) + (9/2)arcsin[(x - 2)/3] + C

in conclusion:

∫ √(5 + 4x - x²) dx = (1/2)(x - 2)√(5 + 4x - x²) + (9/2)arcsin[(x - 2)/3] + C
(I've just checked this successfully on my PC)


I hope this helps..

Evaluate the integral *int* x^2sqrt(4x+3)dx?

x^2sqrt(4x+3) dx

let u^2 = 4x+3; u = sqrt(4x+3)
2u du = 4 dx
1/2 u du = dx

∫((u^2 - 3)/4)^2 sqrt(u^2) 1/2 u du
1/32 ∫(u^2 - 3)^2 u^2 du
1/32 ∫(u^4 - 6u^2 +9) u^2 du
1/32 ∫u^6 - 6u^4 +9u^2 du
1/32 (1/7) u^7 - (1/32)6(1/5)u^5 + (1/32)9(1/3)u^3 + c
1/224 u^7 - 6/160 u^5 +3/32 u^3 + c
1/224 (4x+3)^7/2 - 3/80 (4x+3)^5/2 +3/32 (4x+3)^3/2 + c

TRENDING NEWS